Shrinkage Priors on Complex-Valued Circular- Symmetric Autoregressive Processes

نویسندگان

چکیده

We investigate shrinkage priors on power spectral densities for complex-valued circular-symmetric autoregressive processes. construct predictive densities, which asymptotically dominate (i) the Bayesian density based Jeffreys prior and (ii) estimative with maximum likelihood estimator, where Kullback-Leibler divergence from true to a is adopted as risk. Furthermore, we propose general constructions of objective Kähler parameter spaces by utilizing positive continuous eigenfunction Laplace-Beltrami operator negative eigenvalue. present numerical experiments stationary model order 1.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the existence of Hilbert valued periodically correlated‎ autoregressive processes

‎In this paper we provide sufficient condition for existence of a‎ ‎unique Hilbert valued ($mathbb{H}$-valued) periodically‎ ‎correlated solution to the first order autoregressive model‎ ‎$X_{n}=rho _{n}X_{n-1}+Z_{n}$‎, ‎for $nin mathbb{Z}$‎, ‎and‎ ‎formulate the existing solution and its autocovariance operator‎. ‎Also we specially investigate equivalent condition for the‎ ‎coordinate process...

متن کامل

Stationary solutions for integer-valued autoregressive processes

The purpose of this paper is to introduce and develop a family of Z+-valued autoregressive processes of order p (INAR(p)) by using the generalized multiplication F of van Harn and Steutel (1982). We obtain various distributional and regression properties for these models. A number of stationary INAR(p) processes with specific marginals are presented and are shown to generalize several existing ...

متن کامل

Shrinkage Priors for Bayesian Prediction

We investigate shrinkage priors for constructing Bayesian predictive distributions. It is shown that there exist shrinkage predictive distributions asymptotically dominating Bayesian predictive distributions based on the Jeffreys prior or other vague priors if the model manifold satisfies some differential geometric conditions. Kullback– Leibler divergence from the true distribution to a predic...

متن کامل

Adaptive Bayesian Shrinkage Estimation Using Log-Scale Shrinkage Priors

Global-local shrinkage hierarchies are an important, recent innovation in Bayesian estimation of regression models. In this paper we propose to use log-scale distributions as a basis for generating familes of flexible prior distributions for the local shrinkage hyperparameters within such hierarchies. An important property of the log-scale priors is that by varying the scale parameter one may v...

متن کامل

Complex-Valued Gaussian Processes for Regression

In this paper we propose a novel Bayesian kernel based solution for regression in complex fields. We develop the formulation of the Gaussian process for regression (GPR) to deal with complex-valued outputs. Previous solutions for kernels methods usually assume a complexification approach, where the real-valued kernel is replaced by a complexvalued one. However, based on the results in complex-v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2021

ISSN: ['0018-9448', '1557-9654']

DOI: https://doi.org/10.1109/tit.2021.3079512